

36631

B.Sc. VI Semester (CBCS) Degree Examination, May/June-2019 MATHEMATICS

Trigonometry Topology and Fuzzy Sets Paper No. - 6.1

Time: 3 Hours

Maximum Marks: 70

Instructions to Candidates:

Answer all Sections.

SECTION - A

Answer any Five of the following.

 $(5 \times 2 = 10)$

https://www.vskub.com

- 1. Define Interior point, exterior point of a set.
- 2. Let (X, τ) be a topological space Let $x \in X$, $N_1 \& N_2$ be two neighbourhoods of x then prove that $N_1 \cap N_2$ is also a neighbourhood of x.
- 3. Give an example to show that $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.
- 4. Prove that cosh(x-y) = coshx. coshy sinhx. sinhy.
- 5. If $\sin(A+iB) = x+iy$. Prove that $\frac{x^2}{\cos h^2 B} + \frac{y^2}{\sin h^2 B} = 1$.
- 6. Define compliment of a fuzzy subset with an example.
- 7. Let $Y = \{y_1, y_2, y_3, y_4\}$. Let $A = \{(y_1, 0.1), (y_2, 0.8), (y_3, 0), (y_4, 1)\}$

B =
$$\{(y_1, 0.5), (y_2, 0.7), (y_3, 0.2), (y_4, 1)\}$$
. Then find A \vee B, A \wedge B.

[P.T.O

SECTION - B

Answer any FTVE of the following.

(5×6≈3

- 8. Let R be the set of all real numbers and u be the family of subsets of R def_{in} as follows i) A=0 or ii) if A is non empty then for every $x \in A \exists$ an open inter. I. Such that $x \in I \subset A$ then prove that u is a topology on R.
- Let (X,τ) be a topological space then a subset A of X is open if and only if A
 neighbourhood of each of its points.
- 10. Let (X,τ) be a topological space. A,B be subsets of X then prove in $d(\phi) = \phi$ ii) If $A \subset B$ then $d(A) \subset d(B)$.
- 11. Let (X,τ) be a topological space. Let A, B be subsets of X then prove that
 - i. If $A \subset B$ then $\overline{A} \subset \overline{B}$.
 - ii. $\overline{A \cup B} = \overline{A} \cup \overline{B}$

https://www.vskub.com

- iii. $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$.
- 12. Let $X = \{a, b, c, d, e\}$, $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}\}$ be a topole on X. Find $A^o, (A^i)^o, \partial(A)$ where $A = \{a, c, d\}$.
- 13. Let (X,τ) be a topological space and A be a subset of X which is neither empty singleton set. Find d(A).
- 14. Prove that every finite T₁ space is discrete.

https://www.vskub.com

ļ

(3)

36631

SECTION - C

Answer any Five of the following.

(5×6=30)

https://www.vskub.com

- 15. Expand $\sin 7\theta$ in ascending powers of $\sin \theta$.
- 16. Prove that $2^{\frac{\pi}{2}} \cos\left(\frac{n\pi}{4}\right) = 1 nC_2 + nC_4 nC_6 + \dots$ where n is a +ve integer.
- 17. Show that $16\sin^5\theta = \sin 5\theta 5\sin 3\theta + 10\sin \theta$.
- 18. Find all the values of $\log \left[\frac{1 + \cos \alpha + i \sin \alpha}{1 + \cos \alpha i \sin \alpha} \right]$.
- 19. Sum the series $1 + \frac{\cos\theta}{1!} + \frac{\cos 2\theta}{2!} + \frac{\cos 3\theta}{3!} + \dots \infty$.
- 20. Let A, B be any two fuzzy subsets of X. Let $\alpha, \beta \in [0,1]$ then prove that
 - i) $\alpha_{A \wedge B} = \alpha_A \cap \alpha_B$.
 - ii) $\alpha_{A \vee B} = \alpha_A \cup \alpha_B$.
- 21. Let $f: X \to Y$ be a function where X, Y are two sets. Prove that $f(A \lor B) = f(A) \lor f(B)$.