https://www.vskub.com

36632

VI Semester B.Sc. Degree Examination, September/October 2020 MATHEMATICS

Paper XIII (6.2) – Numerical Analysis (CBCS – New)

Time: 3 Hours

Max. Marks: 70

Instructions: 1) Answer all the Sections.

2) Non-programmable calculator may be used.

SECTION - A

Answer any five of the following :

 $(5 \times 2 = 10)$

- Find the number of trustworthy figures in (0.318)³ assuming that 0.318 correct to the last figure.
- 2. State the Bisection Method.
- 3. Construct the Forward difference table from the following data and find $\Delta^2 f(1)$ and $\Delta^3 f(1)$.

$$x:$$
 0 1 2 3 4 $f(x):$ 1.0 1.5 2.2 3.1 4.6

- 4. Prove that $E = (1 \nabla)^{-1}$.
- 5. Using Weddle's rule evaluate $\int_{3}^{6} y_x dx$ from the following data:

$$x_0$$
 x_1 x_2 x_3 x_4 x_5 x_6
 $x: 3.0$ 3.5 4.0 4.5 5.0 5.5 6.0
 $y_x: 0.4771$ 0.5440 0.6020 0.6532 0.6996 0.7404 0.7782
 y_0 y_1 y_2 y_3 y_4 y_5 y_6

1/3

P.T.O.

https://www.vskub.com

- 6. Evaluate $\int_{3}^{3} x^4 dx$ by Trapezoidal rule by choosing h = 1.
- 7. Using Picard's method solve $\frac{dy}{dx} = x + y$, y(0) = 1, at x = 0.1 upto 2^{nd} approximation.

II. Answer any five of the following:

$$(5 \times 6 = 30)$$

- 8. Find the real positive root of the equation $x \log_{10} x = 1.2$ between 2 and 3. Correct to three decimal places by Regula-Falsi method.
- 9. Solve $x^3 x^2 2 = 0$ over (1, 2) by Secant method.
- 10. Find the real positive root of the equation $x^4 x 10 = 0$ between (1.5, 2) correct to three decimal places by Newton-Raphson's method.
- 11. Solve by Gauss-Elimination method :

$$5x_1 - x_2 - 2x_3 = 142$$
, $x_1 - 3x_2 - x_3 = -30$, $2x_1 - x_2 - 3x_3 = 5$.

12. Solve by Jacobi's method:

$$20x + y - 2z = 17$$
, $3x + 20y - z = -18$, $2x - 3y + 20z = 25$.

13. The table gives the distance in Nautical miles of the visible horizon for the given heights in feet above the earth surface. Find the value of 'y' when x = 218 ft and 410 ft.

$$x = \text{height}$$
 100 150 200 250 300 350 400 $y = \text{distance}$ 10.63 13.03 15.04 16.81 18.42 19.90 21.27

14. Prove the identity

$$u_x = u_{x-1} + \Delta u_{x-2} + \Delta^2 u_{x-3} + \dots + \Delta^n u_{x-n}$$

15. Express $f(x) = 3x^3 + 3x^2 - 5x - 5$ in Factorial Notation and also find its successive differences.

SECTION - C

III. Answer any five of the following:

 $(5 \times 6 = 30)$

- 16. Find the real root of the equation $e^x = 5x$ that lies near x = 0 by using Aitken's Δ^2 method.
- 17. Use Gauss-Seidal Method to solve 5x-y=9, x-5y+z=-4, y-5z=6.
- 18. Given:

https://www.vskub.com

x = 1.96 = 1.98 = 2.00 = 2.02 = 2.04 y = 0.7865 = 0.7739 = 0.7651 = 0.7563 = 0.7473 Find y' and y'' at 2.03.

- 19. Evaluate $\int_{0}^{6} \frac{dx}{(1+x)^2}$ correct to 3 places of decimal in the step of 1 unit. Using Simpson's 1/3rd rule.
- 20. By using Simpson's $3/8^{th}$ rule with h = 0.2 find the approximate area under the curve $y = \frac{x^2 1}{x^2 + 1}$ between the ordinates x = 1 and x = 2.8.
- 21. Use Taylor's series method to solve $\frac{dy}{dx} = x + y$, y(0) = 1, at x = 0.2 by choosing h = 0.1.
- 22. Given that $\frac{dy}{dx} = \log(x + y)$ with the initial condition y = 1 at x = 0. Use Euler's modified method to find 'y' at 0.2 and 0.5.
- 23. Solve $\frac{dy}{dx} = \frac{1}{x+y}$, y(0) = 1 for x = 0.5(0.5) 1 using Runge-Kutta fourth order method.