

24518

V Semester B.Sc. Examination, November/December 2017 (New-Syllabus) PHYSICS

Paper - VI (5.2): Statistical Physics, Quantum-Mechanics and Electronics - I

Time: 3 Hours Max. Marks: 80

Instruction: Write answers to Section - A questions in the first two pages only.

SECTION - A

I. Answer the following, each of 1 mark.

 $(15 \times 1 = 15)$

https://www.vskub.com

- 1) What is phase space?
- 2) What is Stirling's approximation?
- 3) Can matter wave travel faster than light? Justify your answer.
- 4) Write the expression for zero point energy of a quantum mechanical oscillator.
- 5) Name two particles involved in the compton scattering.
- Define ensemble.
- 7) Write the expression for energy of a particle in one dimensional box.
- 8) What is avalanche break down?
- 9) What is the resistance of an ideal PN-junction when it is reverse biased?
- 10) What is π -section filter?
- 11) What is liquid crystal?
- 12) In a transistor $I_B = 60 \, \mu A$, $I_C = 1.75 \, mA$, calculate the current gain (β).
- 13) Draw the circuit symbol of LED.
- 14) What is meant by thermal runway?
- 15) On what factor colour of LED depends?

P.T.O.

II. Answer any five of the following, each of 5 marks.

- $(5 \times 5 = 25)$
- 16) Compare Maxwell-Boltzmann and Fermi-Dirac statistics.
- 17) Illustrate the Heisenberg's uncertainty principle by gamma-ray microscope.
- 18) Describe time independent Schrödinger's wave equation.
- 19) Derive an expression for electrical conductivity of semiconductor.
- 20) Explain how zener diode works as a voltage regulator.
- Explain the working principle of solar cell and its applications.
- With diagram, explain the working of JFET.

SECTION - C

III. Answer any four of the following, each of 10 marks.

 $(4 \times 10 = 40)$

- 23) a) State and prove Boltzman equipartition theorem.
 - b) Write a note on Gibb's paradox.

(7+3)

https://www.vskub.com

- 24) a) What is compton effect? Derive an expression for compton shift.
 - b) A monochromatic beam of X-rays of wavelength 0.2 nm is incident on a carbon block and gets scattered. If the scattered beam is observed at right angles to the incident beam, find the Compton Shift.

Given: Mass of electron = 9.11×10^{-31} Kg

Planck's constant = 6.62×10^{-34} JS

Velocity of light = 3×10^8 m/s.

(7+3)

- 25) a) Obtain an expression for energy of a linear harmonic oscillator using Schrödinger wave equation.
 - b) What is the lowest energy in MeV that a neutron can have if it is confined to move along the edge of an impermeable box of length 10^{-14} m. Mass of neutron = 1.67×10^{-27} kg. (7+3)

-3-

24518

https://www.vskub.com

- 26) a) What is Hall effect? Obtain the expression for Hall-coefficient in terms of charge carrier density.
 - b) A Germanium plate of thickness 2 mm, breadth 10 mm and length 200 mm is placed in a magnetic field of 0.6 web/m² acting perpendicular to its thickness. If 0.02 A current flows along its length, Calculate the Hall voltage if the Hall-coefficient is 3.76×10⁻⁴ m³/coulomb. (7+3)
- 27) a) Explain the working of a centretrapped full wave rectifier and obtain the expression for efficiency and ripple factor of the rectifier.
 - b) Compare the merits and demerits of LED and LCD. (5+5)
- 28) a) Explain the working of a npn transistor as an amplifier in CE configuration.
 - b) What is dc load line of a transistor? Explain with the help of diagram how the dc load line can be drawn and how the operating point can be located. (5+5)

https://www.vskub.com
Whatsapp @ 9300930012
Send your old question papers
and get Rs.10 paytm or upi payment