

36529

V Semester B.Sc. Degree Examination, September/October 2020 PHYSICS

Paper V (5.1) - Atomic and Molecular Physics (CBCS)

Time: 3 Hours Max. Marks: 70

Instructions: 1) Answer all questions from Section - A and five from Section - B and any three from Section - C.

2) Write answers to Section A questions in the first two pages only.

SECTION - A

Answer the following:

 $(15 \times 1 = 15)$

https://www.vskub.com

- 1. What is the specific charge of an electron?
- 2. Define impact parameter.
- 3. What is the nature of the path of a particle in the Thomson experiment?
- 4. What is the total energy of an electron for $n = \infty$?
- Define ionization potential.
- 6. Who discovered the nucleus of the atom?
- 7. Who proposed the nuclear model for an atom?
- 8. What are stationary orbits?
- State Paullie's exclusion principle.
- 10. Can principal quantum number is zero?
- 11. What is Stark effect?
- 12. What is Fluorescence?
- 13. Define normal Zeeman effect.
- 14. What is optical pumping?
- 15. What are stokes lines?

1/2

https://www.vskub.com

SECTION - B

Answer any five questions:

 $(5 \times 5 = 25)$

- 16. Discuss Thomson's and Rutherford's model of an atom.
- 17. Describe the Frank-Hertz experiment for the determination of critical potentials.
- 18. Write a note on space quantization.
- 19. Explain quantum theory of Raman effect.
- Write any five applications of Laser.
- 21. Explain the principle, working of He-Ne Laser.
- 22. Explain the use of Raman effect in determining the molecular structure.

SECTION - C

Answer any three questions:

 $(3 \times 10 = 30)$

(5 + 5)

- 23. (a) Derive an expression for the radius of the electron orbit for hydrogen atom.
 - (b) Calculate the ionization potential for hydrogen atom. (6 + 4)
- 24. (a) With necessary theory explain J.J. Thomson's method to determine the specific charge of an electron.
 - (b) A water droplet of radius 10^{-6} m is charged with one electron. Calculate the electric field required to keep it stationary $\rho_w = 1000 \text{ kg m}^3$ $e = 1.6 \times 10^{-19} \text{ C}$. (8 + 2)
- (a) Explain the different quantum numbers associated with vector atom model.
 - (b) Write a note on Pauli's exclusion principle.
- 26. (a) Describe Stern-Gerlach experiment.
 - (b) Explain quantum theory related to normal Zeeman effect. (5 + 5)
- 27. (a) Give the theory of pure rotational spectra.
 - (b) The J = 0 to J = 1 absorption line in the carbon monoxide occurs at a frequency 1.163×10¹¹ Hz. Calculate the moment of inertia and bond length. (6 + 4)