

24517

Fifth Semester B.Sc. Degree Examination, November/December 2016 PHYSICS - V

Paper - 5 [5.1] : Atomic and Molecular Physics (New Syllabus)

Time: 3 Hours Max. Marks: 80

Instructions: 1) Answer all questions from Section – A, any five from Section – B and any four from Section – C.

2) Write answers to Section – A questions in first two pages only.

SECTION - A

Answer the following :

 $(15 \times 1 = 15)$

https://www.vskub.com

- 1) How many electrons are excess on a liquid drop whose charge is 1.6 nc?
- 2) Mention any one use of Mass Spectrograph.
- Define impact parameter.
- 4) What are stationary orbits?
- 5) What will be the energy of emitted photon when electron in hydrogen atom jumps from 10th orbit to the ground state?
- 6) What is the value of the orbital quantum number for which the orbit is always spherical?
- 7) State Pauli's exclusion principle.
- 8) Name the smallest unit of magnetic dipole moment.
- 9) Which idea of vector atom model is useful to explain the anamalous Zeeman effect?
- 10) State Franck Condon principle.
- 11) Mention any one use of Raman effect.
- 12) Name the type of molecular spectra observed in the far infrared region.
- 13) Which type of spectrum is the characteristic of molecules?
- 14) Why anti stokes lines are less intense than stokes lines?
- 15) What is recorded on the hologram?

P.T.O.

https://www.vskub.com

SECTION - B

II. Answer any five of the following:

(5×5=25)

- 16) Derive the expression for the energy of the electron in the nth Bohr orbit, assuming the expression for the radius of hydrogen atom.
- 17) Discuss L-S coupling scheme.
- 18) Discuss the two distinct features of vector model of atom.
- 19) Explain the main features of continuous X-ray spectrum and Duane-Hunt Limit.
- 20) Classify the molecular spectra and briefly explain each of them.
- 21) What is meant by population inversion and pumping? Mention the types of pumping.
- 22) Describe the experimental set up used to study Raman effect.

SECTION - C

III. Answer any four of the following:

 $(4 \times 10 = 40)$

23) Describe J. J. Thomson's method of determining the specific charge of the electron with necessary theory.

(6+4)

a) Derive expression for the radius of nth orbit of electron from Bohr's theory.
b) Calculate the radius of 3rd Bohr orbit using constant values for singly ionized helium atom.

$$\epsilon_0 = 8.85 \times 10^{-12} \text{F/m, h} = 6.625 \times 10^{-34} \text{ J.S, e} = 1.6 \times 10^{-19} \text{Cm} = 9.1 \times 10^{-31} \text{ kg}$$

25) Describe the Stern-Gerlach experiment and indicate the importance of the results obtained. https://www.vskub.com

10

10

- 26) a) Discuss the rotational spectrum of diatomic Molecule treating diatomic molecule as rigid rotator.
 - b) In the CO molecule the wave number difference between successive absorption lines in the pure rotational spectrum is 384m⁻¹. The reduced mass of CO molecule is 1.138 x 10⁻²⁶kg. Calculate the moment of inertia and equilibrium bond length of molecule. (7+3)
- 27) a) Discuss how quantum theory is successful in explaining Raman effect.
 - b) Describe the construction and working of Ruby laser. (5+5)
- 28) Discussing absorption, spontaneous and stimulated emission, get the relationship between Einstein's coefficients.