https://www.vskub.com

Third Semester B.Sc. Degree Examination, November/December 2019

MATHEMATICS

Paper 3.2 - Differential Equations - I

(New)

Time: 3 Hours

Max. Marks: 60

Instructions: Answer all Sections.

SECTION - A

Answer any ten of the following:

 $(10 \times 2 = 20)$

- 1. Verify that $y = a \cos x + b \sin x$ is the solution of the equation $\frac{d^2y}{dx^2} + y = 0$.
- 2. Form the differential equation of family of curves $y = e^{mx}$ where 'm is arbitrary constant.
- 3. Solve: $(x^2 + 1)\frac{dy}{dx} = 1$
- 4. Show that the equation $(x^2 ay) dx + (y^2 ax) dy = 0$ is exact and hence solve it.
- 5. Solve: $(2D^2 + D + 2)y = 0$.
- 6. Evaluate: $\frac{1}{D^2+4}\sin 2x$.
- 7. Solve: $(D^2 + 3D 4)y = 12e^{2x}$.
- 8. Find the orthogonal trajectories of the family of Astroids $x^{2/3} + y^{2/3} = a^{2/3}$.
- 9. Solve: $p^2 5p 6 = 0$
- 10. Find the General solution of the equation $(x-1)^2 p^2 2xyp + y^2 1 = 0$.

1/3

P.T.O.

https://www.vskub.com

Show that the equation $(ax - bx^2)y'' + 2ay' + 2by = x$ is exact.

12. Solve: $\frac{dx}{y^2} = \frac{dy}{x^2} = \frac{dz}{x^2 y^2 z^2}$.

SECTION - B

Answer any three of the following:

 $(3 \times 5 = 15)$

- 13. Solve: $\frac{dy}{dx} = \frac{x+y-2}{y-x-4}$.
- 14. Determine the suitable integrating factor and solve the equation $xy dx (x^2 + 2y^2) dy = 0$.
- 15. Solve the equation for y: $y = x + 2 \tan^{-1} p$.
- 16. Find the general and singular solution of $(p-1)e^{3x} + p^3e^{2y} = 0$ by using the substitution $u = e^x$ and $v = e^y$. https://www.vskub.com
- 17. Find the orthogonal trajectories of the family of curves $r^n = a^n \cos n\theta$.

SECTION - C

Answer any three of the following:

 $(3\times 5=15)$

- 18. Solve: $(D^2 6D + 9)y = e^{3x}(x^2 + 7x + 5)$.
- 19. Solve: $(2x-1)^3 \frac{d^3y}{dx^3} + (2x-1)\frac{dy}{dx} 2y = 0$.
- 20. Solve the Simultaneous equations $D^2x 3x y = e^t$ and Dy 2x = 0.
- 21. Verify the condition of integrability and solve $yz \log z \, dx zx \log z \, dy + xy \, dz = 0$.

22. Solve:
$$\frac{dx}{x^2 + y^2 + yz} = \frac{dy}{x^2 + y^2 - xz} = \frac{dz}{z(x + y)}$$
.

https://www.vskub.com

30353

SECTION - D

Solve any two of the following:

 $(2 \times 5 = 10)$

- 23. Solve: $\frac{d^2y}{dx^2} (\cot x)\frac{dy}{dx} (1 \cot x)y = e^x \sin x$ by finding the complementary function.
- 24. Solve: $x \frac{d^2y}{dx^2} \frac{dy}{dx} + 4x^3y = x^5$ by changing the independent variable.
- Solve: $x^2 \frac{d^2y}{dx^2} 2x(1+x)\frac{dy}{dx} + 2(1+x)y = x^3$ (x > 0) by changing dependent variable.
- 26. Show that the equation $(2x^2 + 3x)y'' + (6x + 3)y' + 2y = (x + 1)e^x$ is exact and solve it.